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First-passage time, survival probability and propagator on 
deterministic fractals 

S Bravo Yuste 
Depammento de Fisica Universidad de Extremadura, 06071 Badajoz, Spain 

Received 2 August 1995 

Abstract. The first-passage time density, t ( r ,  r) (defined as the probability density for the 
time spent by a random walker to travel (for the first time) the distance I that separates the 
starting site from its nemst neighbours), and the survival probability S(r, r) (i.e. the probability 
that a rmdom walker who Starts at a site has not been absorbed by tnpps located on its 
nearest neighbours at distance I in the time inrerval (0, r)), were calculated for the clvs of 
deterministic fractals in which rites are isolated fmm the rest of the lanice by their nearest, 
neighboun. The large = r/(d‘?i%’/d”m) asymptotic expressions for these qumtities are 
@@, r )  ii AB”/2tdm exp(-Ct”) and h(r, 1) = 1 - S(r, r) a (AjC)(d, - l)b-’/2exp(-Ce”) 
with U = d, / (d ,  - l),  A and C being characteristic constants for each fractal. The asymptotic 
expression for S(r. I) is used to justify that. for this class of determintstic fractals, the propagator 
or Green function is given asymptotically by P(r .  f )  - rrdS/’bil exp(-CF”) for large ). with 
d = vj2  - d,. This value of OL differs from others proposed recently. 

1. Introduction 

Transport in disordered systems displays many qualitatively different properties with respect 
to transport in uniform systems [2 ,  31. For example, such systems exhibit anomalous 
diffusion which is usually [l] manifested in the behaviour of the mean-square displacement 
of a random walker: 

( r Z )  % 2 ~ t ’ l ~ w  (1.1) 
where d, z 2 is the anomalous diffusion exponent and D is the diffusion coefficient. 
Because fractal structures also show these anomalous properties, they have been regarded 
as models for geometrically disordered systems. 

The key property of fractal stlllctures is their dilation symmetry (self-similarity) which 
allows, i n  some cases, one to find analytic results by means of renormalization schemes. 
For exampleJhe anomalous diffusion exponent [3] or the first-passage time to a nearest 
neighbour [4, 51 may be obtained in this way. Some other analytic results concerning 
the function P ( T ,  t )  rdf -dP(r ,  t), defined as the (configurational averaged) probability 
density to find the random walker at time f at a distance T from its starting point, are known. 
The constant dj is the fractal dimension and d is the dimension of the Euclidean space in 
which the fractal is embedded. Both ? and P are called the propagator or Green function 
of the diffusion. From the definition of k ,  one has that rd f -dP(r ,  f) ddr  is the probability 
of finding the random walker in the volume ddr  at distance T from its starting point, and 
thus 

(1.2) 
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(r’) = / rdf-d’2P(r, t )  ddr  . ’ 
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For loopless fractals (such as self-avoiding walks) and for the infinite percolation cluster at 
criticality, the propagator has the form of a stretched Gaussian [3] 

P(r,  t )  - r-dJz exp(-&’) (1.3) 
for e >> 1, where 

Here d, = 2df/dw is the spectral dimension, c is a constant and 

The propagator given by (1.3) is also expected for fractals with loops, but the value 
of C for fractals has been a subject of controversy [3]. Guyer [6], by means of numerical 
renormalization in the Laplace space, and Van den Broeck, by analytical renormalization 
on first-passage times, have shown that ir = v for the Sierpinsky gasket in two dimensions. 
Also, Kiafter et nl [7] have found that this value is in agreement with numerical results 
for d-dimensional Sierpinsky gaskets. To the best of my knowledge, these are the only 
deterministic fractals with loops for which the propagator of (1.3), with D given by (IS), 
has been justified. Surprisingly, in spite of this weak support,-equation (1.3) together with 
(1.5) is usually accepted to be of general validity for all kinds of fractals! In this paper I shall 
add reasons to maintain this belief by giving arguments to support that P(r,  t )  is described 
by (1.3) and ( IS) ,  not only for Sierpinsky gaskets, but for a whole class of deterministic 
fractals (to which the d-dimensional Sierpinsky gasket belongs). These fractals are those in 
which sites are isolated from the rest of the lattice by their nearest neighbours of the same 
generation (a detailed description of this class of fractals is given in section 2). Examples 
are the d-dimensional Sierpinsky gasket, the Given-Mandelbrot curve [SI, the Cayley tree, 
the hierarchical percolation model, or the Mandelbrot-Viseck curve [9]. Furthermore, I 
claim that the propagator for all of these fractals is more precisely described by adding a 
potential factor to (1.3), i.e. 

(1.6) P(r,  t )  - t-dJ2eu exp (-4”) 
with 

a = VI2 - df . (1.7) 
Expressions of the form (1.6) have been conjectured for any fractal in [IO-121, but with 

different values for 01. There, P(r,  t )  is found as the solution of a fractional diffusion 
equation and several expressions for a are postuIated on an empirical basis or from 
arguments of plausibility. The most recent proposal, due to Roman and Alemany [12], 
is 01 = 01m (d, - dj)v/2. This proposal has recently received additional support from 
Roman in [13], in which random fractals were studied analytically and numerically. Based 
on an entirely different approach and on numerical results for d-dimensional Sierpinsky 
gaskets, Klafter et al [7] have proposed 01 = a m  E (dj - d,/2)/(dW - 1). 

In section 2, I calculate, following the procedure of van den Broeck [4, SI and for those 
fractals with sites isolated by nearest neighbours, the probability density for the time spent 
by a random walker, initially on a site of the fractal lattice, to arrive for the first time at any 
of its nearest neighbours of the same generation, i.e. the first-passage-time (or waiting-time) 
density @(i). Next, this quantity is reinterpreted as the probability density for the time spent 
by the random walker to travel, for the first time, the distance r that separates the starting 
site from its nearest neighbours. This shall be written as $(r, t )  in order to emphasize 
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this interpretation. In this section it is proved that the first-passage-time density is given 
asymptotically by @(r, f )  x r / ( m t ’ / d u ) .  Here A and 
C are characteristic constants for each fractal. I provide their values for some significative 
cases below. Nexc @(r, t )  is used to calculate the survival probability, S(r, t ) ,  i.e. the 
probability that a random walker who starts at a site has not been absorbed by traps located 
on its nearest neighbours at a distance r in the time interval (0,~). This is a fundamental 
quantity in the study of the so-called ‘trapping problem’ [14, ch 51 where it is required either 
directly, when the traps are placed at a fixed distance [15], or as a prior known magnitude 
when traps are randomly placed [16; 171. Examples of this last case appear in the study 
of diffusion-limited reactions in fractal structures 118, and references therein] where, as is 
well known, the reaction kinetics is non-classical. 

In section 3, it i s  argued that the functional form of P(r,  t ) ,  for large (, can be deduced 
from the functional form of S(r, t )  assuming, that S(r, f )  - l: P ( x ,  t )xd f - ’  dx when t is 
small and r is large (i.e. large 5).  The expression for P(r ,  t )  so ‘derived’ is a stretched 
Gaussian corrected by a power-law factor whose exponent is given by u/Z - df (see 
equation (1.6)). I think is worth noticing that the approach for this ‘derivation’, which 
goes through the concepts of fist-passage time and survival probability, is, to the best 
of my knowledge, completely new. Finally. the results are summarized and discussed in 
section 4. 

exp(-Q”) for large [ 

2. First-passage time and survival probability 

As is well known, an easy way of generating deterministic fractals is by means of an iterative 
procedure that uses an ‘initiator’ and a ‘generator’ [SI. For example, we can generate a two- 
dimensional Sierpinsky fractal by means of a triangle as initiator and a generator formed 
by three triangles joined at their vertex. At each iteration (generation), every triangle equal 
(except for its size) to the initiator is replaced by the generator. Figure 1 shows a triangle 
of the nth generation and its internal triangles corresponding to the (n + 1)th and (n + 2)th 
generation. Of course, the fractal may be generated in the ‘opposite direction’. One stam 
from the initiator (the zeroth triangle) and, at each iteration, the (n + 1)th triangle is formed 
by means of the nth triangles (disposed in the same way that the zeroth triangles were 
manged to form the generator  the^ first triangle)). I will call the zeroth decimated fractal 
or, simply, original lattice, the lattice formed by initiators, and the nth decimated fractal 
the lattice formed by the nth figures (triangles in our example). The (n + 1)th decimated 
lattice is the decimated lattice of the nth decimated fractal. 

For our purposes, we will see these geometrical constructions as lattices formed by 
connections (the sides of the triangles in our example) and sites (the points of bifurcations). 
The random walker goes (jumps) from a site to one of its nearest neighbours after a (waiting) 
time which is a random variable. It shall be assumed in this paper that the mean waiting 
time between jumps is finite. A property of the d-dimensional Sierpinsky lattice, shared 
by many other fractals (Given-Mandelbrot curve, Cayley tree, Mandelbrot-Viseck curve, 
hierarchical percolation model, . . .), is that it is not possible to go from a site (say, 0 in 
figure 1) to a non-nearest ~neighbour’on the (n + 2)th decimated lattice (the site A, for 
example) via the connections of the (n + 1)th decimated lattice without previously passing 
through its nearest neighbours on the (n + 2)th decimated lattice (sites 1, 2, 3 and 4). It 
will be said that sites are isolated by their nearest neighbours in these fractals. 

The first-passage-time (FPT) density @(f) of a fractal is, by definition, the probability 
that a diffusing particle starting at a site reaches, for the first time, at time f any of its 
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A 

Figure 1. A triangle, AED. of me nlh generation (decimation) and its internal triangles 
corresponding to the (n + 1)rh ((n - 1)th decimation) and (n + 2)th genemion ((n - 21th 
decimation) of the two-dimensional Sierpinsky gasket. An example of the (n t 1)fh generation 
triangle is OAB, while one of the (n +2M generation triangle is 012. 

nearest neighbours on the many (ideally, infinitely) times decimated fractal. That is, 

$ ( t )  = lim !A@) (2.1) 

where $r.(t) is the FPT density for the n-times decimated fractal. For fractals with sites 
isolated by their nearest neighbours it is possible to calculate $ ( t )  by means of the 
renormalization procedure of Van den Broeck [4, 51 (conceived initially by Machta [19] 
for a one-dimensional regular lattice). In this paper, I will consider FPT densities with a 
finite first moment (i.e. finite mean) Zhat is taken to be equal to 1. This is equivalent to a 
setting of the time scale. 

In [4 ,5 ]  van den Broeck has shown that, when $(f)  has finite first moment, its Laplace 
transform 

n-m 

?J(s) l / f ( s )  (2.2) 
may be obtained by solving the functional equation 

f(Ts) = p(f(s)) f ( o )  = f’@) = 1 
where p(x )  is a characteristic function for each lattice and r (time rescaling factor) is the 
factor by which the time to go from a site to one of its nearest neighbours grows (shrinks) 
in each decimation (generation). It is known that p(x )  = 16x3 - 21x + 13/(2x) - l/(2x3) 
for the Given-Mandelbrot curve (notice that there was an erratum in the second term of 
p ( x )  given in [5 ] )  and that p ( x )  = 4x2 -3x for the two-dimensional Sierpinsky gasket [5 ] .  
For the d-dimensional Sierpinsky gasket one has 1201 

p ( ~ )  = 2d.2 - 3(d - 1)x + d - 2 .  (2.4) 
These characteristic functions will be needed to calculate the constant C that appears on the 
exponential term of the asymptotic form of $(r,  t )  for large 6 (see equation (2.20)). The 
exact solution f ( s )  of the functional equation (2.3) is generally unknown. Nevertheless, 
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from this equation, one can find its Taylor-series expansion, information about its zeros and 
its asymptotic behaviour for large s. 

Next shall be derived the asymptotic form, for large x ,  of p(x)  for fractals in which 
sites are isolated by their nearest neighbours (see equation (2.7)). The function p(x) is 
defined by 

where 01 labels every path that goes from the original site (say 0 in figure 1) to a specified 
nearest neighbour on the nth-generation lattice (A, for example), l / q u  is the probability of 
the random walker to go from 0 to that specified site along the path CL (no matter what the 
arrival time), Ne is the number of steps or hops on the (n f 1)th-generation lattice required 
to travel the path 01, and p is the number of nearest neighbours of the original site ( p  = 4 in 
our Sierpinsky example). Equation (2.5) embodies the assumption that the random walker 
has an equal probability to go to any of its nearest neighbours from the original site. We 
can write (2.5) as 

where the subscript m labels the shortest (minimum) path (or paths) that goes from the 
original site to the specified neighbour, A is the number of steps of this minimum path, 
and the subscript o labels the other (non-minimum) paths. Continuing with the example of 
the two-dimensional Sierpinsky fractal (see figure l), one sees that there exists only one 
minimum path between the site 0 and A (one of its nearest neighbours) through the next- 
generation lattice, namely, 0 +~ 1 ?r A. The length of this path is then h = 2. Clearly, 
the probability of going from 0 to 1 is $, and the probability of going from 1 to A is also a, so the probability of going from 0 to A via~the shortest path is l/qm = $. 

Because 1 < A e No and $(s) + 0 fors  + CO, one has that 

for large s. For brevity’s sake I will write l/z instead of p l/qm. Notice that l/z can be 
interpreted as the probability that the random walker goes from a site to any of its nearest 
neighbours via any of the minimum paths. In our Sierpinsky example we have l/z = i. 
By using this definition of z and that of (2.2) for f(s), together with (2.3), one finds that 
(2.7) becomes the functional equation 

f ( s s )  z3 z f”(s ) .  
The solution of equation (2.8) is 

(2.8) 

where 

A‘ = zl/(A-l) (2.10) 

and C‘ is a constant that can be evaluated numerically. It should be noticed that A (which 
was defined as the number of steps of the minimum path that goes along the (n + 1)th 
generation lattice between a site and any of its nearest neighbours on the nth generation 
lattice), is also the factor by which the distance between a site and any of its nearest 
neighbours grows (shrinks) in each decimation (generation). In other words, A is the length 
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rescaling factor in each generation or decimation. The definition of the anomalous diffusion 
coefficient by (1.1) implies that d,  = Inr/lnh. Therefore, equation (2.9) is 

1 
(2.11) 

A' 
The asymptotic behaviour of @ ( t )  for small times is obtained from the inverse Laplace 

l/f(s), with 'f(s) given by (2.11). It turns out that the Laplace 

f ( s )  = - exp(C's'/du) . 

transform of $(s) 
transform of 

I(r) = At'Y-') exp(-C/ta) (2.12) 

can be obtained by means of the Laplace method [21 J and is given by 

for large s. Comparing this result with $(s) = l/f(s) % A'exp(-C's'ldw) for large s, one 
finds that $(t) ,  for small t ,  should be given by 

@(r) = At-(@/**') exp(-C/tB) (2.14) 

with 

(2.15) 

(2.16) 

(2.17) 

and where the relation U = p + 1 has been used. Values of A', C' A, and C for several 
fractals are given in table 1. Away from the short-time regime, @ ( t )  is given by 

(2.18) 

with xi < 0 being the ith largest root of f(x) = 0 [5].  

Table 1. Constants appearing in the asymptotic expression of $(SI = l/f(s) for large s, 
equation (2,111, and $(f) for small I ,  equation (2.14). The symbol ID refers IO the one- 
dimensional case, GM refen to the Given-Mandelbrot cuwe, and sd 10 the d-dimensional 
Sierpinsky gasket 

Case d, = I n r / I n l  A' C' A c 
LD 2 2 f i  1/2 
GM ln22/ln3 4 2.0 1.5 1.1 
s2 ln5/ln2 4 1.96' 1.82 0.98 
s3 In6/lnZ 6 2.30b 2.78 1.31 
54 lnI / ln2 8 2 . W  3.69 1.56 
SI ln8/ln2 10 2.74 4.56 1.75 
S6 In9/ln2 12 2.90 5.42 1.91 
SI InlO/ln2 14 3.03 6.26 2.04 

a In agreement with the value reported in [51. 
In agreement with the value reporred in [7]. 
A slightly different value of 2.56 was obtained in [7]. 
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We have defined @ ( f )  dt as the probability that a diffusing pafticle starting at a site 
reaches any of its nearest neighbours of the same generation, for the first time, in the time 
interval (t, f + dr), unit time being the mean time spent by the diffusing particle to ixavel 
the distance between the original site and any nearest neighbour. This distance is, therefore, 
m. Thus, one can interpret +(t) dt as the probability that a diffusing particle starting at 
a site reaches another site separated by a distance r ,  for the first time, in the time interval 
( t ,  t +at), unit time being the mean time to reach the distance r., This time is ( r / m ) d u .  
In order to emphasize this interpretation, I will write this probability as +(r,  t ) .  which can 
be explicitly stated in terms of @(t): 

(2.19) 

For the sake of simplicity and without loss of generality, in what follows I will choose the 
unit of length so as to make 2 0  = 1. Using equations (2.19) and (2.14), one gets 

+(r ,  t )  % exp ( -Ct”)  (2.20) 

for large 5 = r/t1ldw. 
Let h(t)  be the probability tbata random walker, who starts at f = 0 at a given site (say 

0), is absorbed during the time interval (0, t )  by traps placed on the nearest neighbours of 
0 belonging to the same generation, unit time being the mean time spent by the diffusing 
particle to go to any of its nearest neighbours from the original site. I will call the mortality 
function the function h(r, I) defined as the probability that a random walker who starts at 
a site is absorbed by traps located on its nearest neighbours at a distance r in the time 
interval (0, f ) .  It is clear from the definitions of h(r, I) and S(r, f )  that h(r,  t )  = 1 - S(r. f ) .  
Reasoning as after (2.18), one sees that, analogously to (2.191, h(t)  and h(r, r) are related 
by 

~ h ( r ,  t )  = h ( ~ - ~ - ) .  (2.21) 

From the definition of @(t)  and h( t )  we know that 

W )  = 1‘ dr  @(d. (2.22) 

Inserting (2.14) in this equation, integrating, and using the resulting expression in (2.21), 
one finds that the mortality function of a random walker in fractals isolated by nearest 
neighbours is 

exP(-Cf”) (2.23) - l ) t -vp  
C 

h(r, t )  % 

for large t .  On the other hand, inserting (2.18) into (2.22) and using the relation 

one finds that 

Figure 2 plots the difference, AS, between the survival probability 

(2.24) 

(2.25) 

(2.26) 
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Figure 2. The difference, AS, between the survival probability corresponding to the two- 
dimensional Sierpinsky gasket (full curve), the Wee-dimensional Sierpinsky gasket (broken 
c w c ) .  a d  the Given-Mmdelbrot curve (dored clwe) with respect to that corresponding to the 
one-dimensional lattice. As refuence. also represented is one-tenth of the survival probability 
for the one-dimensional lanice (full C U N e  with crosses). 

Corresponding to the two- and three-dimensional Sierpinsky lattice and to the Given- 
Mandelbrot curve with that corresponding to the one-dimensional lattice: 

(2.27) 

I have also plotted S(r,  t)/10 for the one-dimensional lattice as a reference. We see 
that S(r. t )  is smaller for the three fractal examples than for the one-dimensional case when 
6 5 1, and it is larger when e 2 1. Recall that S(r. t )  is the probability that the random 
walker has never gone further than r from its starting point at 0 along the time interval (0, t).  
and that t l /d -  is the ensemble average of the distance spanned by random walkers between 
their starting site and their positions at time t (cf equation (1.1)). Therefore, figure 2 means 
that the probability that over the time interval (0, t )  a random walker never goes further 
than the ensemble averaged (or mean) distance travelled by random walkers at time L is 
always smaller for our fractal examples than for the one-dimensional lattice. The opposite 
is true for 2 1, i.e. the probability that during the time interval (0, t )  a random walker 
has gone further than the mean distance corresponding to this time is always larger for our 
fractal lattices than for the one-dimensional lattice. A remarkable fact is that the values of 
S(r, t )  for f = 1 are very similar; they are compressed between 0.37 and 0.38 in our four 
examples. Also notice that AS has a minimum close to 5 = 
for every fractal. 

and a maximum near = 

3. Propagator for large 5 

Let 30, f) (&r, t ) )  be the probability that the random walker which started at r = 0 when 
t = 0 is inside (outside) the region of radius r after the time t when there exist no traps 
(free process). It is clear that .?(, t )  and S(r, t )  are different. Moreover, it should be clear 
that $(r, f )  > S(r, t )  (&r, t )  c h(r, r ) )  because in the free process the random walker can 
return to the inner region after walking in the outer region, whereas this is not possible 
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when there exist (perfect) traps at distance r .  However, I conjecture that 
h(r, t)  c kfi(r, f )  (3.1) 

for lage e (short times and/or large distances), k being a constant. This conjecture is 
supported by the fact that h(r, f )  FZ 2&r, t )  for the onedimensional lattice (cf the appendix). 
Moreover, it is expected that 1 4 k < 2 because for fractal structures the probability of 
return to t h e h e r  region should be smaller than for the one-dimensional lattice, in agreement 
with the fact that the probability to return to the origin, P(0, t )  - frd*/*, decays more slowly 
for the onedimensional lattice (ds = 1) than for fractal structures in which d, >.l. 

Next, it is proved that the quantity h(r ,  t )  obtained from (3.2) by using the propagator 
of (1.6) satisfies (3.1), provided that LY = v /2  -df. It is clear from the definition of &i-, t )  
and @(r,  t )  = rdI-dk'(r, t )  that 

L ( x ,  t )  = a d  $(T ,  t)rd-l dr (3.2) hm 
with a d  = 27cdIz/ r ( d / Z ) .  Assuming that the propagator has the form 

P(r, t )  at-dJz(uexp(-ct') (3.3) 
for large 5 (cf equation (1.6)), one gets from (3.2) that 

with & = xjt1Idw. Using the asymptotic expansion of the incomplete gamma function 1221 
one finds that 

(3.7) 

for large e. Equation (3.1) together with (2.23) and (3.7) implies~that the propagator is 
given by (3.3) with 

c = c  (3.8) 

* 
h ( r , t )  x 7& utd 1- Gexp(-ccO) 

V C  

(3.9) 

(3.10) 

(3.11) 

Notice that although I have assumed that k is a constant, this is not strictly necessruy. The 
above results are valid even if k depends on provided that k ( < )  is subdominant with 
respect to cm (for example, k ( e )  could change logarithmically). 

It should be clear that it has not been proved that the propagator is given asymptotically 
by (3.3) with q and 0 given by (3.9) and (3.1 I), respectively. However, I think that this result 
is quite plausible because it is derived from the reasonable assumption that h(r, t ) / i ( r ,  t )  
is subdominant with respect to a power of e. As said before, this argument leads to the 
correct values of 01 and D for the one-dimensional lattice. Furthemore, the agreement of 
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this result for i, with the widely accepted value w = d,/(dw - 1) reinforces the plausibility 
of our argument. On the other hand, there is no consensus about the value of 01, with 
even the existence of the potential prefactor not being well established. Thc most recent 
proposal of Roman and Alemany 1121, (YRA = (d,-dj)w/2, and the relation of Klafter etal, 
a m  =~ (df - d,/2)/(dW - I), differ significantly from the present result 01 = w/2 - d j .  
For example, for the Given-Mandelbrot curve (dj = log 8/ log 3, d, = 2 log 8/ log22) one 
finds 01 = -1.117, whereas (YRA = -0.425 and 01m = 0.268; for the two-dimensional 
Sierpinsky fractal (df = log3/log2, d, = 21og3/log5) one has 01 = -0.707, whereas 
(YW = -0.193 and a m  = 0.321. We see in these examples (other examples could be 
given) that the expression for (Y proposed in this paper leads to negative values less than 
(YRA. which are also negative, and a m ,  which are positive. This means that the potential 
term tu has the effect of decreasing P(r, t) when the value of 01 proposed in this paper 
is used or that proposed by Roman and Alemany, the decrement being smaller in the last 
case; the effect is the opposite when 01m~ is used. 

4. Conclusions 

In this paper I have studied some fundamental quantities that describe statistically the 
diffusion of a random walker on a particular class of fractals. These quantities are the first- 
passage time, the survival probability and the Green function or propagator. The fractals 
considered were those in which it is not possible for the random walker to go from a site, say 
0, to a non-nearest neighbour on the decimated lattice through the original (non-decimated) 
lattice, without passing through nearest neighbours of 0 that belong to the decimated lattice. 

For all of these fractals I have found that the asymptotic expression for the first-passage- 
time density for 5 >> 1 can be written in terms of the anomalous diffusion coefficient d, 
as: $ ( r , f )  % At”/Z+d~exp(-C$Y) where U = d,/(d, + 1). The constants A and C 
were calculated numerically for the Given-Mandelbrot curve and for the two- to seven- 
dimensional Sierpinsky gasket and compared with reported estimations when available. 

I also calculated the survival probability for this class of fractals. It was shown for the 
Given-Mandelbrot curve and for the two- and three-dimensional Sierpinsky gasket that this 
quantity is smaller than that corresponding to the onedimensional lattice for .$ 5 1 (with the 
minimum at t - {), larger for 5 2 1 (with the maximum at 5 - f), and almost coincident 
for .$ 1. In any case, the differences are always small. The asymptotic expression of 
the survival probability for large t was also obtained in terms of the anomalous diffusion 
coefficient: S(r, f) % 1 - (A/C)(d, - l)t-”/zexp(-Cty). 

From this last expression I have ‘derived’ the asymptotic form of the propagator for 
$ >> 1: P(r,  f )  % nt-d~/zEuexp(-C{’). The value obtained for t is U = d,/(d, + l), 
which is precisely the widely accepted value. However, the value obtained for a, namely 
01 = v/2  - d f ,  differs from others suggested recently. Therefore, it would be convenient to 
have simulation results precise enough to be able to resolve this discrepancy. 

As said before, it is well known that for fractals without loops the propagator decays as 
exp(-Cp) for 5 >> 1. This is also true for the percolation cluster at criticality. Moreover, 
it was argued in this paper that this result is also true for all fractals (with and without 
loops) belonging to a given (and broad) class. Thus, it is a natural step to conjecture that 
the propagator would exhibit this behaviour for all media with self-similarity. Another 
natural, although admittedly more risky, step along this line of reasoning would lead us to 
conjecture that the potential factor .$‘ appearing in the propagator is also universal. 

This paper has been concerned with the study of the diffusion of a random walker on 
fractals generated deterministically so that they are strictly self-similar. I think it would 
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also be interesting to carry out this study for random fractals (which are self-similar only in 
a statistical sense), and analysing to what extent the results provided in this paper remain 
valid or change. Work is in progress along this line. 
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Appendix 

In this appendix it shall be proved that (3.1) holds in one dimension with k = 2. Let h(x ,  t )  
be the probability that the random walker who,starts at x will be absorbed by traps placed 
at x = -r and x = r in the time interval (0, r ) ,  let H ( x ,  r )  = 1 - h(x, r )  be the probability 
that he will not be absorbed, and let g(x) be the initial probability density function. Then, 
the mortality function is given by 

h(r, r )  = g(x)h(x, t ) d x  = 1 - g(x)H(x, r ) d x .  (A.1) s: s: 
It is well known 123, section X.51 that H ( x ,  t )  is given by 

-@ (4mr + 2r + x )  + @ (4mr + x > ]  
m m 

where @(x) is the standard normal distribution 

Using the relation @(-x) = 1 - @(x), one finds that h(x, t )  = 1 - H ( x ,  r )  is given by 

The initial probability density function is g ( x )  = S(x - 0) when random walkers start at 
X = 0. In this case, inserting (A.4) into (A.l), one gets 

m 

h(r, 2) = 2[i - N)J + ZC(-~)~  (4 [(2m - IXI - 4 ri2m + WI} (A.5) 

where 6 e r / m .  Using the relation @(x) = 1 - erfc(x/fi)/2, equation (A.5) becomes 

(A.6) 

so that, for large e, equation (A.6) 

m=l 

m 

h(r, r )  = 2x(-l)m+'erfc[(2m - l):/fi]. 
m=1 

But the function erfc(x) decreases quickly for large 
yields 

h(r, t )  = 2erfc({/&). (A.7) 
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On the other hand, the propagator in one dimension is 

Therefore, the probability that the random waker who starts at x = 0 and r = 0 is outside 
the region [-r, r ]  after the time f when no traps exist is given by 

(A.ll) 

= ert+c(c/-h). (A.12) 

proved that h(r, f )  Z=Z 2&r, r) for c >> 1 in one Comparing (A.7) with (A.12), it 
dimension. 
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